Start main content

Academic Staff

Back
Dr SUGIMURA, Rio Ryohichi 杉村竜一

Dr SUGIMURA, Rio Ryohichi 杉村竜一

  • PhD (Stowers Institute for Medical Research), MD, BS (Osaka U)
  • Assistant Professor
L1-59, Laboratory Block, 21 Sassoon Road, Hong Kong
+852 3917 9269
  • Immunology & Hematology
  • Cancer Immunotherapy
  • Organoid
  • Stem Cell
  • Assistant Professor, School of Biomedical Sciences, HKU (2020–Present)
  • Researcher, Kyoto University, Japan (2018-2020)
  • Postdoctoral Fellow, Harvard Medical School, USA (2014–2018)
  • Postgraduate Researcher, Stowers Institute for Medical Research, USA (2012-2014)
  • Ph.D., Stowers Institute for Medical Research, USA (2008-2012)
  • BSc & M.D., Osaka University, Japan (2002-2008)

Our vision is to work on the intersection of bioengineering and stem cell biology to invent new tools for understanding and treating immune disorders and cancers. We apply cutting edge approaches of single-cell RNA sequencing & molecular barcoding, organoids, and stem cell differentiation.

Functional immune cells
Previously, we identified a genetic program to derive hematopoietic stem and progenitor cells from human pluripotent stem cells (Nature 2017). Now we aim for the identification and application of the mechanisms to specify functional immune cells from human pluripotent stem cells. Off-the-shelf generation of immune cells will benefit both cell therapy and disease modeling of immunodeficiency such as X-linked severe combined immunodeficiency (SCID). We are going to employ the novel single-cell RNA sequencing and molecular barcoding strategies in collaboration with the University of Cambridge, UK.

Molecular switch of innate immune cells
We established mesoderm organoids from human pluripotent stem cells that recapitulate the specification of immune cells (J. Vis. Exp. 2019). Based on the organoid system, we are going to define the molecular switch of anti-cancer innate immune cells and harness them to target cancer. Innate immune cells (including macrophages, neutrophils, and innate lymphoid cells) determine the response to anti-PD1 immunotherapy of cancer. We envision that the identification of the molecular switch of anti-cancer innate immune cells will propel the application of cancer immunotherapy.

Remodeling tumor microenvironment
We defined a molecular mechanism that microenvironment maintains blood stem cells (Cell 2012). We established a versatile platform of organ-on-a-chip to model the microenvironment of embryonic hematopoietic tissues (Biomed. Microdevices 2020). Now we aim to decipher the tumor microenvironment. We are going to remodel the tumor microenvironment using a novel chimeric antigen receptor (CAR) technology in collaboration with the University of Pavia, Italy.

Organ-on-a-chip (Biomed. Micodevices 2020):

Organ-on-a-chip

We welcome students to join us to work on single-cell technologies, the fundamental science of immune cell regulation, and translational projects on cancer immunotherapy. Please email Dr. Rio Sugimura (rios@hku.hk) directly for opportunities.

  1. Sugimura, R.; Ohta, R.; Mori, C.; Li, A.; Mano, T.; Sano, E.; Kosugi, K.; Nakahata, T.; Niwa, A.; Saito, M. K.; Torisawa, Y.-S. Biomimetic Aorta-Gonad-Mesonephros-on-a-Chip to Study Human Developmental Hematopoiesis. Biomed. Microdevices 2020, 22 (2), 34. https://doi.org/10.1007/s10544-020-00488-2.
  2. Sugimura, R.; Ohta, R.; Mori, C.; Sano, E.; Sugiyama, T.; Nagasawa, T.; Niwa, A.; Torisawa, Y.; Saito, M. K. Angiocrine Factors from HUVECs Amplify Erythroid Cells; Biorxiv 2019. https://doi.org/10.1101/837823.
  3. Ohta, R*.; Sugimura, R*.; Niwa, A.; Saito, M. K. Hemogenic Endothelium Differentiation from Human Pluripotent Stem Cells in A Feeder- and Xeno-Free Defined Condition. J. Vis. Exp. JoVE 2019, No. 148. https://doi.org/10.3791/59823. (*co-first author)
  4. Sugimura, R.; Jha, D. K.; Han, A.; Soria-Valles, C.; da Rocha, E. L.; Lu, Y.-F.; Goettel, J. A.; Serrao, E.; Rowe, R. G.; Malleshaiah, M.; Wong, I.; Sousa, P.; Zhu, T. N.; Ditadi, A.; Keller, G.; Engelman, A. N.; Snapper, S. B.; Doulatov, S.; Daley, G. Q. Haematopoietic Stem and Progenitor Cells from Human Pluripotent Stem Cells. Nature 2017, 545 (7655), 432–438. https://doi.org/10.1038/nature22370.
  5. Venkatraman, A.; He, X. C.; Thorvaldsen, J. L.; Sugimura, R.; Perry, J. M.; Tao, F.; Zhao, M.; Christenson, M. K.; Sanchez, R.; Yu, J. Y.; Peng, L.; Haug, J. S.; Paulson, A.; Li, H.; Zhong, X.; Clemens, T. L.; Bartolomei, M. S.; Li, L. Maternal Imprinting at the H19-Igf2 Locus Maintains Adult Haematopoietic Stem Cell Quiescence. Nature 2013, 500 (7462), 345–349. https://doi.org/10.1038/nature12303.
  6. Sugimura, R.; He, X. C.; Venkatraman, A.; Arai, F.; Box, A.; Semerad, C.; Haug, J. S.; Peng, L.; Zhong, X.-B.; Suda, T.; Li, L. Noncanonical Wnt Signaling Maintains Hematopoietic Stem Cells in the Niche. Cell 2012, 150 (2), 351–365. https://doi.org/10.1016/j.cell.2012.05.041.
  7. Perry, J. M.; He, X. C.; Sugimura, R.; Grindley, J. C.; Haug, J. S.; Ding, S.; Li, L. Cooperation between Both Wnt/{beta}-Catenin and PTEN/PI3K/Akt Signaling Promotes Primitive Hematopoietic Stem Cell Self-Renewal and Expansion. Genes Dev. 2011, 25 (18), 1928–1942. https://doi.org/10.1101/gad.17421911.
  1. Travel Award (Kanehara Memorial Foundation, 2019)
  2. Scholar Award (American Society of Hematology, 2016-2018)
  3. Genius Award (Japanese Young Hematologist Meeting, 2013)
  4. Abstract Achievement Award (American Society of Hematology, 2013)
  5. Travel Award (International Society for Stem Cell Research, 2013)
  6. Travel Award (International Society for Stem Cell Research, 2012)
  7. Travel Award (International Society for Stem Cell Research, 2011)
  8. General Scholarship (March of Dimes, 2009)

C12N 5/0789 (20060101); A61K 35/28 (20060101) Invention title: Hematopoietic stem and progenitor cells derived from hemogenic endothelial cells